Pulldown Micropiles

CHANCE Helical Pulldown Micropile

The CHANCE Helical Pulldown Micropile is a system that combines the use of a grout column around the shaft of a Helical Pile Foundation System.

The CHANCE Helical Pulldown Micropile does not require removing spoils from the site. By combining both end-bearing on the helical plates and skin friction along the rough surface of the grout column, the result is a higher capacity pile system.

Developed in 1997 for sites with especially weak surface soils, this patented innovative application of the helical pile integrates Portland cement-based grout to increase the section properties of the shaft.

The CHANCE Helical Pulldown Micropile (HPM) brings the advantages of the pre-engineered helical pile to higher load applications. The Helical Pulldown Micropile can provide an additional 50-100% capacity when compared to an ungrouted helical pier in the same soil conditions.

By “pulling down” a special flowable grout as the foundation is screwed into the soil, these micropiles create a deep foundation with both a friction-bearing central shaft and end-bearing helical plates in incompetent substrata.

CHANCE Helical Foundations install quickly in any weather condition. A hydraulically powered torque motor is mounted to standard construction equipment such as a digger-derrick truck, line truck, rubber tired backhoe, track-hoe excavator, or front end skid-steer loader. Continuous torque and crowd is applied to advance the Helical Pulldown Micropile into the soil

Benefits of the CHANCE Helical Pulldown Micropile

Benefits of the Pulldown Micropile

Deep Foundation Applications

CHANCE Helical Pulldown Micropiles are used to form a grout column around the shaft of a standard helical anchor/pile. The installation process can employ grout only or grout in combination with either steel or PVC casing. To begin the process, a helical anchor/pile is placed into the soil by applying torque to the shaft. The helical bearing plates require significant force or torque to advance the helical pile into the soil.

After the lead section containing helical plates penetrates the soil, a lead displacement plate and extension are placed onto the shaft. Torque is again applied on the assembly to advance the helical plates, which pulls the displacement plate downward, forcing soil outward and creating a cylindrical void around the shaft.

From a reservoir at the surface, a flowable grout immediately fills this void surrounding the shaft. Additional extensions and displacement plates are added until the helical bearing plates reach the minimum depth required, or competent load-bearing soil. This displacement pile system does not require removing spoils from the site.

Contact Intech Anchoring for a Quote

Name*

Tim Comb

President

Tim is the President of Intech Anchoring and has 25 years of experience in the Civil Engineering and Geostructural Industry. Tim has developed extensive industry knowledge by working to support the needs of specialty contractors at each and every business level. Tim’s diverse industry background has given him exposure to a wide variety civil construction projects, ranging from the simplest residential applications to the most complex commercial and industrial projects. Coupled with a highly skilled and educated team, Tim focuses on providing the highest quality products and solutions to Intech Anchoring’s customers in order to consistently exceed expectations.